УДК 631.416.2

СВЯЗЬ МЕЖДУ СОДЕРЖАНИЕМ В ПОЧВЕ ОБМЕННОГО АЛЮМИНИЯ И ЛЕГКОПОДВИЖНОГО ФОСФОРА

П.В. Орлов, Нижегородский НИИСХ

Рассмотрена связь между содержанием в почве обменного алюминия и фосфатов.

Ключевые слова: известковый мелиорант, удобрения, обменный алюминий, подвижный фосфор.

В Нижегородской области (на базе опытного поля Нижегородского НИИСХ) в 1978 г. по методике ВИУА был заложен опыт

Цель исследований – изучить совместное действие известкового мелиоранта с ежегодным применением минерального удобрения.

Дозы мелиоранта от 0,5 до 2,5 г.к., внесенные перед закладкой опыта удобрения вносили в количестве, составившем на единицу площади севооборота 110 кг д.в/га ($N_{36}P_{31}K_{43}$) на умеренном фоне (NPK)₁; 220 кг д.в/га ($N_{71}P_{63}K_{86}$) при внесении повышенной дозы (NPK)₂ и 330 кг д.в/га ($N_{108}P_{93}K_{129}$) на высоком фоне (NPK)₃. Дозы удобрений под культуры севооборота были различными. Почва — светло-серая лесная легкосуглинистая, образованная на лессовидном суглинке. Содержание гумуса 1,76%.

С момента внесения различных доз доломитовой муки прошло четыре ротации восьмипольного севооборота. Методика проведения и полученные результаты на начало пятой ротации севооборота (2010 г.) подробно освещены в работе [1].

С одной стороны, длительное применение минеральных удобрений приводит к возрастанию потенциальной кислотности почвы, преимущественно за счет увеличения содержания подвижного алюминия [2,3]. С другой стороны, считается, что высокие дозы фосфорных удобрений снижают подвижность алюминия в почвах и сдвигают оптимальный интервал для роста сельскохозяйственных культур в сторону более кислых значений [4].

Влияние удобрений и длительного последействия известкования на потенциальную кислотность, обменный алюминий и

содержание подвижного фосфора (в слое 0-20 см)											
Фон NPK	CaCO ₃ + MgCO ₃ , г.к. (фактор В)										
(фактор А)	0	0,5	1,0	1,5	2,0	2,5	сред.	$HCP_{B}^{\ *}$			
pH_KCl											
$(NPK)_0$	4,6	4,8	4,7	5,0	5,2	4,8	4,9				
$(NPK)_1$	4,4	4,8	5,0	5,1	4,8	5,0	4,9				
$(NPK)_2$	4,4	4,6	4,8	4,5	4,8	4,9	4,7	0,20			
$(NPK)_3$	4,2	4,4	4,3	4,3	4,7	4,7	4,4				
Сред.	4,4	4,7	4,7	4,7	4,9	4,9	-				
$HCP_A^{\ *}$		0,17									
Al $_{\text{подв.}}$, MΓ/100 $_{\Gamma}$											
$(NPK)_0$	1,53	0,45	0,59	0,32	0,45	0,77	0,69				
$(NPK)_1$	2,35	0,90	0,68	0,54	2,12	0,68	1,21				
$(NPK)_2$	3,51	1,49	1,17	1,13	0,99	0,86	1,53	1,08			
$(NPK)_3$	4,81	3,06	3,15	3,92	0,77	1,67	2,90				
сред.	3,05	1,48	1,40	1,48	1,08	1,00	-				
HCP_A	0,88										
		P_2O_5 (по Киро	санову)	, мг/кг						
$(NPK)_0$	179	171	191	162	188	167	176				
$(NPK)_1$	207	210	225	196	216	186	207				
$(NPK)_2$	228	218	235	251	222	235	232	19,7			
$(NPK)_3$	257	230	383	279	246	253	275				
Сред.	218	207	259	222	218	210	-				
HCP_A	HCP_A 24,1										
P ₂ O ₅ (0,01 M CaCl ₂), мг/л											
$(NPK)_0$	0,47	0,31	0,31	0,17	0,19	0,43	0,31	$F_{\phi} < F_m$			
$(NPK)_1$	0,52	0,52	0,61	0,76	0,77	0,62	0,63				
$(NPK)_2$	0,60	0,91	0,75	0,80	0,77	0,68	0,75				

(NPK) ₃	0,76	1,43	1,58	0,80	1,56	1,60	1,29	
Сред.	0,59	0,79	0,81	0,63	0,82	0,83	-	
HCP_A	0,24							

^{*}Во всех случаях взаимодействие факторов недостоверно.

В данной работе рассмотрена связь между содержанием в почве обменного алюминия и фосфатов, определенных по Кирсанову и в 0,01 M CaCl₂-вытяжке (легкоподвижный фосфор).

При увеличении доз удобрений наблюдается последовательный рост содержания подвижного фосфора по Кирсанову. При этом содержание легкоподвижного фосфора возрастает относительно контроля в 2 раза при применении одинарной дозы удобрений ($N_{36}P_{31}K_{43}$) и в 4 раза при внесении тройной дозы удобрений ($N_{108}P_{93}K_{129}$). При этом одинарная и двойная дозы удобрений были равнозначными по влиянию на содержание легкоподвижных фосфатов.

Изменение степени подвижности фосфатов имело различный характер по фонам NPK. В диапазоне рН_{КСІ} 4,6-5,2 в вариантах без внесения удобрений связь между содержанием обменного алюминия и легкодоступного фосфора была положительной и достоверной (г=0,84 на 5%-ном уровне значимости), т.е. при длительном последействии известкования проявлялась тенденция к снижению обоих показателей. При ежегодном внесении умеренной дозы удобрений также проявлялась подобная связь рассматриваемых показателей, но на уровне тенденции (коэффициент корреляции составил 0,44).

Содержание обменного алюминия в вариантах (NPK) $_3$ + (Ca+Mg) 0-1,5 г.к. составило более 3 мг/100 г при рH_{KCl} 4,2-4,3(табл.), что согласуется с представлениями о возрастании его подвижности в почве при рH_{KCl}<4,5 [5].

Напротив, на фоне повышенной и высокой доз NPK при существенном снижении содержания обменного алюминия на произвесткованных делянках проявляется тенденция к увеличению содержания легкоподвижного фосфора (коэффициент корреляции составил -0,55 и -0,81 соответственно). При содержании обменного алюминия в почве выше 3,5 мг/100 г [на вариантах (NPK)₂, (NPK)₃, (NPK)₃ + (Ca+Mg) 1,5 г.к.] степень подвижности фосфатов существенно снижается.

Литература

- 1. *Орлов П.В., Гувеннов А.И., Головнов А.М.* Влияние удобрений на изменение кислотности светло-серой лесной почвы при длительном последействии известкования// Аграрная наука Евро-Северо-Востока. 2011.- № 4. С. 24-28.
- 2. Пивоваров Г.Е., Гомонова Н.Ф., Ширская Г.М. Токсичность дерново-подзолистой почвы и меры ее снижения при систематическом применении минеральных удобрений// Пути повышения эффективности удобрений и плодородия почв в Нечерноземной зоне.- М., 1986. С. 106-122.
- 3. Пухальская Н.В. Проблемные вопросы алюминиевой токсичности // Агрохимия. 2005. № 8. С. 70-82.
- 4. *Небольсин А.Н., Евдокимов В.М.* Эффективность удобрений, мелиорантов и средств защиты растений на Северо-Западе России // Плодородие. -2005. № 3. С. 9-11.
- 5. Окорков В.В., Коннов Н.П. Основы химической мелиорации кислых почв. Владимир, 2008. 248 с.

RELATIONSHIP BETWEEN THE CONTENTS OF EXCHANGEABLE ALUMINUM AND MOBILE PHOSPHORUS IN THE SOIL

P.V. Orlov

Nizhniy Novgorod Research Institute of Agriculture, Selektsiya, Kstov raion, Nizhniy Novgorod oblast, 607686

Relationship between the contents of exchangeable aluminum and mobile phosphorus has been considered. Keywords: lime ameliorant, fertilizers, exchangeable aluminum, mobile phosphorus.