ОЦЕНКА ПОКАЗАТЕЛЕЙ ПЛОДОРОДИЯ ПОСТАГРОГЕННЫХ СЕРЫХ ПОЧВ ЗАЛЕЖЕЙ ПРИ РАЗЛИЧНОМ ИСПОЛЬЗОВАНИИ

А.Н. Рыбакова, О.А. Сорокина, д.б.н., Красноярский ГАУ

Установлено статистически достоверное увеличение содержания гумуса, общего азота и поглощенных оснований в постагрогенных серых почвах залежей по сравнению с вовлеченными в пашню и используемыми под сенокосы. В почвах распаханных залежей усиливаются аммонификация и нитрификация, сохраняется оптимальная структура. По показателям плодородия серые почвы сенокосов, вышедших из-под залежей, занимают среднее положение между пашней и чистой залежью.

Ключевые слова: залежь, сенокос, пашня, постагрогенные серые почвы, достоверность различий, пространственное варырование, показатели плодородия.

В деятельности отделения земледелия РАСХН большое значение придается разработке нормативов изменений свойств основных пахотных почв для обоснования мероприятий по сохранению, воспроизводству и мониторингу почв земель сельскохозяйственного назначения [4; 5]. Определение перспективных направлений исследования земель, выведенных из оборота, причем не только в традиционном сельскохозяйственном русле, но значительно шире в плане минимизации негативного экологического важнейшее направление стратегического воздействия планирования И управления ландшафтами Постагрогенные сукцессии не могут не отражаться на морфологии, физических, химических микробиологических свойств почв. В результате происходит кардинальное изменение закономерностей формирования и функционирования почв, что в свою очередь приводит к эволюции и существенному изменению их экологических функций [2]. В этой связи отслеживание изменений основных показателей плодородия почв бывших залежей при различном направлении их использования - одна из насущных задач мониторинга земель сельскохозяйственного назначения. В условиях Сибири эта проблема мало изучена.

Проводилось сравнение свойств постагрогенных серых почв 20-летних разнотравно-злаковых залежей, а также залежей, введенных в пашню в 2007 г. и используемых под сенокосы в Ачинско-Боготольской и Красноярской лесостепи Средней Сибири. В 2011 г. выбрали пробные площади, расположенные в одинаковых геоморфологических условиях, на близком друг от друга расстоянии. Материнская порода всех почв — коричнево-бурая глина. Характерна резкая ровная граница по глубине бывшей вспашки при переходе от гумусово-аккумулятивного к элювиальному горизонту.

Чистые залежи обоих районов исследования представляют переходные от корневищной к дерновинной стадии сукцессии. Растительность залежей и постзалежных сенокосов представлена, преимущественно, луговым фитоценозом. Распаханные и повторно введенные в пашню поля заняты зерновыми культурами (овес, пшеница).

Методика. Каждую пробную площадь разбивали на пять элементарных участков, c которых отбирали представительный (смешанный) образец почвы из слоёв 0-10 и 10-20 см. Общепринятыми методами определяли содержание гумуса, общего азота (Nобш), отношение углерода к азоту (C:N), актуальную (p H_{H2O}), обменную (p H_{KCI}) и гидролитическую (Нг) кислотность, сумму обменных оснований (S). Нитратный азот (N-NO₃) анализировали с дисульфофеноловой кислотой, поглощенный аммоний (N-NH₄) с реактивом Несслера, подвижный фосфор (P₂O₅) и обменный калий ($K_2\mathrm{O}$) по Кирсанову. Определяли структурный состав при сухом просеивании. Результаты статистически обрабатывали. Рассчитывали среднеарифметическое значение показателей плодородия (Мср). коэффициент их пространственного варьирования

(С,%), достоверность различий между объектами исследования по критерию Стьюдента (t факт. при t теор. 2,1). Оценивали содержание агрономически ценных фракций (АЦФ) и их пространственное варьирование.

Результаты и их обсуждение. Установлено достоверное увеличение содержания гумуса в почвах залежи и сенокоса как в Ачинско-Боготольской (табл.1), так и в Красноярской лесостепи (табл.2). Самое высокое содержание гумуса (8,1%-6,6%) зафиксировано на чистой залежи в обоих районах исследования в слое почв 0-10 см, незначительно снижаясь в слое 0-20 см. При освоении залежей и введении их в пашню содержание гумуса резко снижается, что связано с большими механическими потерями органического вещества при работе техники (дискаторы).

1. Показатели плодородия постагрогенных серых почв залежей Ачинско-Боготольской лесостепи и их статистические параметры

(среднее из 5 определений)								
Показат	Стати	Объект исследования						
ели	стиче	1-	2-	3-	1-	2-	3-	
плодор	ский	залежь	пашня	сенокос	залежь	пашня	сенокос	
одия	показ		0-10 см		10-20 см			
	атель							
Гумус,	Mcp	8,1	3,7	5,1	6,3	3,6	4,7	
%	C,%	19,0	7,4	10,1	9,0	7,0	9,8	
	t	$t_{1-2}6,3$	t_{2-3} 5,4	t_{1-3} 4,2	$t_{1-2}9,6$	$t_{2-3}4,7$	$t_{1-3}4,8$	
N общ.,	Mcp	0,45	0,17	0,24	0,36	0,17	0,23	
%	C,%	23,3	12,4	12,5	13,2	8,1	14,1	
	t	t_{1-2} 5,7	$t_{2-3}4,3$	$t_{1-3}4,4$	$t_{1-2} 8,5$	$t_{2-3}4,1$	$t_{1-3} 5,0$	
C:N	Mcp	10,4	12,6	12,4	10,2	12,4	11,8	
	C,%	6,6	6,7	3,4	5,8	5,0	4,5	
	t	$t_{1-2}4,6$	$t_{2-3} 0,5$	$t_{1-3}5,7$	$t_{1-2}5,8$	t_{2-3} 1,7	$t_{1-3}4,6$	
pH_{H2O}	Mcp	5,5	5,4	5,0	5,4	5,2	4,9	
	C,%	3,5	2,0	1,1	4,4	2,1	1,2	
	t	$t_{1-2}0,2$	t_{2-3} 7,6	$t_{1-3}4,3$	$t_{1-2}0,9$	$t_{2-3}5,9$	t_{1-3} 3,9	
pH _{KCl}	Мср	4,6	4,6	4,3	4,6	4,5	4,1	
	C,%	7,0	2,0	3,3	5,3	2,0	1,8	
	t	$t_{1-2}0,01$	$t_{2-3}4,7$	t_{1-3} 2,2	$t_{1-2} 0,7$	t_{2-3} 7,2	t_{1-3} 3,6	
S,	Mcp	32,2	26,9	35,0	30,9	23,2	31,4	
м-моль	C,%	5,7	5,0	2,6	3,5	6,2	4,2	
$/100\Gamma$	t	$t_{1-2}4,4$	t_{2-3} 10,9	t_{1-3} 3,0	$t_{1-2}9,2$	$t_{2-3}9,4$	$t_{1-3} 0,6$	
Нг,	Mp	5,1	4,4	5,2	4,9	3,8	5,0	
м-моль	C,%	5,0	9,8	7,1	5,3	12,5	9,8	
/100Γ	t	t_{1-2} 3,2	t_{2-3} 3,2	$t_{1-3} 0,5$	$t_{1-2}4,4$	$t_{2-3}4,0$	$t_{1-3} 0,4$	
N-NO ₃ ,	Mcp	4,1	16,9	2,9	3,3	16,3	6,2	
$M\Gamma/K\Gamma$	C,%	57,3	12,6	66,9	87,2	37,3	58,7	
	t	$t_{1-2} 9,0$	t_{2-3} 10,8	$t_{1-3} 0,9$	$t_{1-2}4,3$	t_{2-3} 1,9	t_{1-3} 6,2	
N-NH ₄	Mcp	6,2	12,9	5,2	5,6	12,8	4,4	
$M\Gamma/K\Gamma$	C,%	14,7	10,6	19,6	14,8	13,9	20,1	
	t	$t_{1-2}9,2$	t_{2-3} 10,1	t_{1-3} 1,6	$t_{1-2} 8,2$	t_{2-3} 9,4	t_{1-3} 2,2	
P ₂ O ₅ ,	Mcp	107	85	157	91,3	73	149	
$M\Gamma/K\Gamma$	C,%	13,4	9,3	11,2	12,2	7,8	12,4	
	t	t_{1-2} 3,0	t_{2-3} 8,7	$t_{1-3} 0,9$	t_{1-2} 3,0	$t_{2-3} 8,8$	t_{1-3} 5,8	
K ₂ O,	Mcp	168	132,7	105,4	94,8	102,3	93,9	
$M\Gamma/K\Gamma$	C,%	34,9	21,2	17,6	18,6	18,1	24,1	
	t	t_{1-2} 1,2	t_{2-3} 1,8	t_{1-3} 2,3	$t_{1-2} 0,6$	$t_{2-3}0,6$	$t_{1-3} 0,07$	

Со времен классических работ В.В. Докучаева установлено, что основные потери гумуса (от 15-20 до 50-70%) происходят при освоении и дальнейшем сельскохозяйственном использовании почв, а также при развитии эрозионных процессов [1;3;7]. Наибольшие потери гумуса происходят в 2-3 первых десятилетия. Факты сохранения или накопления гумуса в освоенных пахотных почвах отмечаются значительно реже, в основном при систематическом внесении органических удобрений.

По результатам наших исследований в большинстве случаев увеличение гумуса в постагрогенных серых почвах залежи и сенокоса статистически доказуемо. Особенно значительны различия между залежью и пашней.

Коэффициенты варьирования содержания гумуса в почвах всех объектов не превышают 20%, что свидетельствует о незначительной пространственной пестроте этого показателя.

2. Показатели плодородия постагрогенных серых почв залежей Красноярской лесостепи и их статистические параметры (среднее из 5 определений)

	(среднее из 5 определении)								
Показате	Статис	Объекты исследования							
ЛИ	тическ	1-	2-	3-	1-	2-	3-		
плодород	ий	залежь	пашня	сенокос	залежь	пашня	сенокос		
ия	показа	0-10 cm		,	10-20 см		•		
	тели								
Гумус,%	Mcp	6,6	4,3	5,3	5,1	4,2	4,6		
	C,%	14,7	4,8	12,5	18,4	6,2	6,8		
	t	$t_{1-2}4,6$	t_{2-3} 3,2	$t_{1-3} 2,3$	t_{1-2} 2,1	t_{2-3} 2,2	t_{1-3} 1,1		
N общ.,	Mcp	0,31	0,19	0,24	0,22	0,18	0,21		
%	C,%	19,2	4,2	13,9	22,1	4,1	6,5		
	t	$t_{1-2}3,8$	t_{2-3} 3,0	t_{1-3} 2,8	t ₁₋₂ 1,9	t_{2-3} 2,9	$t_{1-3} 0,5$		
C:N	Mcp	12,6	13,1	13	13,4	13,2	12,5		
	C,%	7,7	4,7	2,2	5,9	4,1	6,9		
	t	$t_{1-2}0,9$	$t_{2-3}0,3$	$t_{1-3} 0,8$	$t_{1-2}0,5$	t ₂₋₃ 1,6	t ₁₋₃ 1,7		
pH _{H2O}	Mcp	5,9	5,8	5,5	5,8	5,7	5,5		
	C,%	0,8	2,5	1,9	1,0	2,2	1,7		
	t	$t_{1-2}0,9$	$t_{2-3}3,5$	$t_{1-3}6,5$	t_{1-2} 2,2	$t_{2-3} 2,5$	$t_{1-3} 6,3$		
pH _{KCl}	Mcp	5,0	4,9	4,7	4,9	4,9	4,7		
	C,%	2,8	2,3	3,0	2,8	2,5	3,1		
	t	$t_{1-2}0,6$	t_{2-3} 2,7	t_{1-3} 2,8	$t_{1-2}0,5$	t_{2-3} 2,0	t_{1-3} 2,3		
S,	Mcp	31,4	26,6	27,3	29,2	22,9	24,7		
м-моль	C,%	2,9	3,8	5,1	5,2	7,1	3,9		
/100Γ	t	t_{1-2} 7,4	$t_{2-3}0,9$	$t_{1-3}5,3$	$t_{1-2}6,4$	t_{2-3} 2,1	t_{1-3} 5,6		
Нг,	Mcp	2,8	2,4	2,7	2,7	2,3	2,5		
м-моль	C,%	8,4	3,5	5,9	3,7	5,3	5,2		
/100Γ	t	$t_{1-2}3,3$	$t_{2-3}3,8$	$t_{1-3}0,7$	$t_{1-2}4,3$	t_{2-3} 1,1	t_{1-3} 1,6		
$N-N0_3$,	Mcp	9,0	12,0	1,9	5,9	9,2	1,9		
мг/кг	C,%	71,2	38,7	13,9	63,0	41,4	40,6		
	t	$t_{1-2}0,8$	$t_{2-3}4,9$	t_{1-3} 2,2	t_{1-2} 1,4	$t_{2-3}4,3$	t_{1-3} 2,4		
$N-NH_{4,}$	Mcp	8,4	11,4	6,1	6,9	10,4	5,8		
$M\Gamma/K\Gamma$	C,%	14,6	13,9	14,4	20,9	19,1	21,7		
	t	$t_{1-2}3,3$	$t_{2-3}6,5$	$t_{1-3} 3,4$	$t_{1-2}3,2$	$t_{2-3}4,4$	t_{1-3} 1,2		
P_2O_5	Mcp	158	308	148	138	296	133		
мг/кг	C,%	23,0	6,8	9,4	21,1	10,3	37		
	t	t_{1-2} 7,3	t_{2-3} 14,1	$t_{1-3} 0,5$	t ₁₋₂ 8,4	t ₂₋₃ 6,2	$t_{1-3} 0,2$		
K ₂ O,	Mcp	181,4	196,7	171,3	128,7	152,5	123,9		
мг/кг	C,%	21,6	10,7	15,8	9,1	10,9	20,4		
	t	$t_{1-2}0,8$	t_{2-3} 1,6	$t_{1-3} 0,5$	$t_{1-2}2,6$	t_{2-3} 2,2	$t_{1-3} 0,4$		

Статистически достоверное снижение валового азота закономерно отмечается при сопоставлении пар : залежьпашня и сенокос-пашня. Его количество в почвах пахотных вариантов снижается более чем в 2 раза, что является следствием развития в почвах залежи и сенокоса дерновоаккумулятивного процесса, приводящего к гумусонакоплению и биологической аккумуляции азота. Обогащенность гумуса азотом в изученных постагрогенных серых почвах характеризуется в целом от низкой (диапазон 11-14) до средней (диапазон 9-11). Более узкое отношение углерода к азоту отмечено на залежи.

Максимальные суммы обменных оснований характерны для обоих слоев почв чистых залежей и сенокосов в обоих районах исследования. Очень слабое пространственное варьирование, не выходящее за пределы 1-12% уровня, отмечено для отношения C:N, величин pH_{H2O} и pH_{KC1} , суммы обменных оснований и гидролитической кислотности в почвах всех объектов.

Постагрогенные серые почвы Ачинско-Боготольской лесостепи характеризуются как среднекислые, а в Красноярской лесостепи как слабокислые. Отмечается достоверное подкисление почвы на сенокосе в сравнении с залежью и пашней. В большинстве случаев различия по гидролитической кислотности и сумме обменных оснований достоверны.

При освоении залежи и вовлечении ее в пашню активизируется нитрификация. Статистически достоверно увеличивается содержание нитратного азота в сравнении с чистой залежью и сенокосом. На участках вновь освоенной пашни обеспеченность нитратным азотом почвы высокая в Ачинско-Боготольской лесостепи и повышенная в

Красноярской лесостепи. Угнетение нитрификации на сенокосных участках вызвано уплотнением почвы при сенокошении. Установлено высокое пространственное варьирование N-NO₃ в обоих слоях почвы, особенно на залежи. Введение залежи в пашню нивелировало пространственное варьирование нитратного азота. Коэффициенты вариации снизились до среднего уровня.

Максимальное содержание аммонийного азота также отмечено в почвах пашни обоих районов по сравнению с залежью и сенокосом. В то же время пространственное варьирование этой формы азота существенно ниже, чем нитратной, особенно в почвах распаханных залежей.

Содержание подвижного фосфора в постагрогенных серых почвах Красноярской лесостепи существенно выше, чем в Ачинско-Боготольской лесостепи. Здесь в почвах залежи и сенокоса по сравнению с пашней более высокое содержание подвижного фосфора, особенно в слое 0-10 см, что связано с его биогенной аккумуляцией. Пространственное варьирование подвижных фосфатов, как правило, незначительное.

Обеспеченность обменным калием почв всех объектов в Ачинско-Боготольской и Красноярской лесостепи высокая или очень высокая, особенно в слое 1-10 см, что характерно для почв лесостепной зоны Красноярского края, характеризующихся тяжелым гранулометрическим составом. Исходя из критерия Стьюдента, существенных различий в содержании обменного калия между объектами исследования не установлено.

Пространственное варьирование этого показателя, особенно в слое 0-10 см намного выше, чем подвижного фосфора.

По содержанию агрономически ценных агрегатов постагрогенная серая почва залежи Красноярской лесостепи характеризуется как отлично оструктуренная (АЦФ 87,4%) в слое 0-10 см и хорошо оструктуренная (АЦФ 78%) в слое 10-20 см. Фракция пыли здесь практически отсутствует. На пашне и сенокосе структурное состояние в обоих слоях оценивается как хорошее (содержание АЦФ от 71,3 до 75,9%). Распределение в пространстве отдельных фракций структурного состава неравномерное и является достаточно варьирующим признаком.

Структурное состояние серых почв Ачинско-Боготольской лесостепи оценивается как отличное на всех объектах в обоих слоях (АЦФ 80,1-87,2%). Содержание глыбистой фракции не превышает 20%, а фракция пыли также практически отсутствует. В целом почвы залежей по сравнению с сенокосом и пашней, особенно в Красноярской лесостепи, более оструктурены. Это можно объяснить обилием корневой системы растительности, и, следовательно, лучшей деятельностью почвенных микроорганизмов, а также влиянием прижизненных выделений корней.

Вариабельность различных фракций структурного состава более сильная в почвах объектов Ачинско-Боготольской лесостепи, особенно на залежи (см. табл.3). Высокая пространственная неоднородность структурного состояния почвы на залежи объясняется более выраженным микрорельефом, куртинистостью напочвенного покрова, очаговым произрастанием трав. В почве сенокоса пространственное варьирование содержания АЦФ незначительное и среднее.

3. Структурный состав и его постагрогенных серых почв залежей

лесостепи, 76									
Объект	Глубина,	Размер агрегатов, мм							
	СМ	Ачинс	ко-Богото	ольская		Красноярская			
		>10	10-0,25	<0,25	>10	10-0,25	<0,25		
Содержание агрегатов									
	0-10	10,4	86,5	3,1	12,4	85,4	2,3		
Залежь	10-20	12,9	85,0	2,3	21,0	78,0	1,0		
	0-10	8,6	87,2	4,3	18,6	75,4	6,1		
Пашня	10-20	18,5	80,1	1,4	21,5	75,9	2,7		
	0-10	12,4	84,5	3,1	23,5	73,7	2,8		
Сенокос	10-20	11,2	85,5	3,3	25,2	71,3	3,5		

Коэффициент варьирования (С)								
	0-10	57,6	43,3	43,9	17,6	20,1	12,8	
Залежь	10-20	42,8	23,0	42,6	14,0	28,7	85,3	
	0-10	54,9	25,5	44,8	29,4	20,2	14,4	
Пашня	10-20	32,1	17,2	32,8	13,1	27,1	42,8	
	0-10	64,8	24,5	30,4	17,8	29,3	64,8	
Сенокос	10-20	48,7	22,0	25,0	23,1	16,2	29,0	

Как правило, содержание агрономически ценных фракций варьирует в незначительной и средней степени. Сильнее варьируют в пространстве фракции глыб и пыли. Судя по АЦФ, при введении залежи в пашню происходит некоторое снижение коэффициентов пространственной вариации структурного состава за счет механической обработки почв.

Таким образом, по комплексу почвенно-агрохимических показателей самым высоким плодородием характеризуются почвы чистых залежей как в Ачинско-Боготольской, так и в Красноярской лесостепи. Освоение залежей и их дальнейшее использование под пашню существенно снижают в почве содержание гумуса, общего азота, поглощенных оснований. Одновременно усиливаются процессы минерализации органического вещества, активизируется аммонификация и нитрификация. При этом сохраняется оптимальное структурное состояние почв и снижается пространственная неоднородность некоторых свойств почв. Участки постзалежных сенокосов по показателям плодородия занимают среднее положение между залежами чистыми и вовлеченными в пашню.

Литература:

- 1. *Булгаков Д.С.* Проблемы использования в Красноярском крае земель, выбывших из сельскохозяйственного оборота, и пути их решения /Д.С. Булгаков, В.В. Чупрова, А.А. Шпедт. //Агроэкологическое состояние и перспективы использования земель России, выбывших из активного сельскохозяйственного оборота. Материалы Всерос. научн. конф.— М.,- 2008. С. 271-274.
- 2. Владыченский А.С. Изменение экологических функций постагрогенных почв /А.С. Владыченский, В.М. Телеснина, Т.А. Чалая //Отражение био-, гео-, анропосферных взаимодействий в почвах и почвенном покрове. Сб. матер. 1У Всерос. конф. 1-5 сентября 2010г. Томск, 2010. С.32-35.
- 3. Гамзиков Г.П. Изменение содержания гумуса в почвах в результате сельскохозяйственного использования (обзорная информация). /Г.П. Гамзиков, М.А. Кулагина. ВНИИТЭИагропром, 1992. 48 с.
- 4. Завалин А.А. Основные итоги деятельности отделения земледелия за 2006-2010годы. //Плодородие.- №2.- 2011. С. 2-5.
- 5. *Иванов А.Л.* Инновационные приоритеты в развитии систем земледелия в России. //Плодородие.- №4.- 2011.- С. 2-6.
- 6. *Кирюшин В.И.* Экологические основы земледелия / В.И. Кирюшин. М.: Колос, 1996. С. 368.
- 7. *Меркушева М.Г.* Изменение гумусного состояния и биологических свойств в деградированных почвах. /М.Г. Меркушева //Органическое вещество почв Забайкалья.- Улан-Удэ: изд-во БНЦ СО РАН, 2008. С.199-214.

EVALUATION INDICATORS SOIL FERTILITY POSTAGROGENNYH GRAY DEPOSITS AT VARIOUS USE

A.N. Rybakova, a graduate student, O.A. Sorokina, Ph.D., professor of Krasnoyarsk State University of Agriculture, nikos. 1948 @ mail.ru

A statistically significant increase in the humus content, total nitrogen and absorbed bases in postagrogennyh gray soils deposits compared with those involved in arable and used for hay-making. In soils cultivated deposits increased ammonification and nitrification, remains the optimal structure. In terms of soil fertility, gray hay, runaway deposits occupy a middle position between the arable and net deposits.

Keywords: pool, hay, arable land, postagrogennye gray soil, significance of differences, spatial variation, indicators of fertility.